본문 바로가기

KIST Talk/사내직원기자

[알기쉬운 과학트렌드] IoT, 사물인터넷과 웨어러블 열전발전소자(광전하이브리드연구센터 오진우 기자)

Internet of Things, 사물인터넷과
웨어러블 열전 발전 소자

 

 

사물인터넷이라는 말을 들어보신 적이 있나요? 사물인터넷은 다른 말로 Internet of Things, 줄여서 IoT라고 하는데요, 인터넷을 기반으로 사람과 사물, 사물과 사물이 서로 연결되는 지능형 기술 및 서비스를 의미합니다. 데이터를 수집하고 연결하여 우리의 삶의 질을 향상시킬 수 있는 기술입니다. 과거에는 데이터의 송수신이 가능한 기기에 제한이 있었지만, 현재는 스마트기기의 빠른 발전과 더불어 IoT 기술이 우리 삶 곳곳에 스며들고 있습니다.

<그림 1> IoT, internet of things. 모든 사물과 사람 간의 데이터(정보)교류가 일어납니다. 특히 현대 사회에서는 스마트폰을 통해 각종 엔터테인먼트 활동을 즐길 수 있고, 스마트 홈 시스템을 통해 냉난방 등을 조절할 수 있습니다. 또한 SNS 등을 통해 전 세계 사람들과 연결할 수 있고, 자신의 건강상태를 수시로 확인하여 건강한 삶을 살 수 있습니다.

IoT의 시대엔 모든 사물과 사람 간의 데이터(정보)교류가 일어납니다. 이미 스마트폰을 통해 각종 엔터테인먼트 활동을 즐기고, 스마트 홈 시스템을 통해 집 밖에서도 냉난방을 조절합니다. 또한 SNS 등을 통해 전 세계 사람들과 교류할 수 있고, 자신의 건강상태를 수시로 확인하여 질병을 사전에 예방할 수도 있습니다. 또 사물인터넷을 이용하면 냉장고 안에 식품의 양이 얼마나 있는지 실시간으로 확인하고, 부족할 경우 곧바로 주문을 하게 됩니다. 가전제품 뿐 아니라 우리가 항상 착용하고 다니는 시계와 같은 스마트 웨어러블 기기는 우리에게 다양한 정보를 보내줄 수 있으며 반대로 혈압과 심박수, 혈당 등 착용자의 건강상태에 대해 실시간으로 정보를 습득할 수 있습니다. 이렇게 습득한 건강정보를 이용하여 새로이 가공된 정보를 제공함으로써 우리는 더욱 건강한 삶을 유지할 수 있을 것입니다. 실제로 최근 발매되고 있는 스마트 웨어러블 기기를 이용하면 물건을 주문하는 기능 뿐 아니라, 실시간 심박수 트랙킹까지 가능합니다.

<그림 2> 현재 상용화된 스마트 워치와 스마트 이어폰, 앞으로 상용화 될 스마트 안경과 렌즈의 이미지

하지만 현재까지는 웨어러블 기기에 치명적인 단점이 존재하고 있습니다. 그것은 바로 전원 문제인데요. 물론 사물인터넷이 탑재된 냉장고 등 대형 가전제품의 경우는 항상 전력원에 연결되어있기 때문에 문제가 되지 않습니다. 반면 스마트 웨어러블 기기는 점차 다양한 기능이 포함되며, 소형이고, 항상 들고 다니는 물건이기 때문에 전원 문제가 항상 발생하고 있습니다. 실제로 제가 사용하고 있는 스마트 워치도 사용시간이 20시간이 채 되지 않습니다.


배터리를 이용한 제품들은 매번 충전을 해야 합니다. 이런 문제를 해결하기 위해서 다양한 자가발전 기술이 개발되고 있습니다. 예를 들면 자가발전이 가능한 열전발전소자는 이런 문제를 해결할 수 있습니다. 열전 발전 소자는 온도의 차이를 이용해서 전기를 생산하는 소자인데요, 사람의 체온은 항상 일정하기 때문에 밖으로 방출되는 열을 이용하여 발전시키는 것이 웨어러블 열전 발전 소자입니다.

 

열전발전소자의 역사는 짧지 않습니다. 1787년과 1821년에 이탈리아의 과학자 Alessandro Volta에 독일의 과학자 Thomas Johann Seebeck이 반도체 물질의 양 끝에 다른 온도를 주었을 때 전기가 생산된다는 지벡효과를 발견했습니다. 하지만 200년의 시간이 흐를 때까지 커다란 반도체 물질에 대해서만 알려졌기 때문에 웨어러블 열전발전소자에 적용하기에는 문제가 있었습니다.

<그림 3> 지벡효과(좌)와 세라믹을 이용한 열전 발전소자(우). 반도체만을 이용해서 제작한 열전 발전소자는 두껍고 유연성을 가지지 않습니다. 또한 반도체 물질을 연결하는 전극 물질과의 접촉저항으로 인해 전체 내부 저항이 커진다는 단점이 있습니다.

반도체만을 이용해서 제작한 열전 발전소자는 두껍고 유연하지 않습니다. 또한 반도체 물질을 연결하는 전극 물질과의 접촉저항으로 인해 전체 내부 저항이 커진다는 단점이 있습니다. 최근에는 유연하고 튼튼한 유기물을 이용한 열전 발전 소자에 대한 연구가 활발히 진행되고 있습니다. 유기열전재료는 무기열전재료에 비해서 낮은 열전 성능을 가지고 있지만, 웨어러블기기에 적용하기에 알맞은 특성인 가벼움, 유연함, 낮은 가격 등의 장점을 갖고 있기 때문에 차세대 열전소자로 각광받고 있습니다.

<그림 5> 다양한 유기재료 중, 전도성고분자(좌)와 탄소나노튜브, 그래핀 같은 나노카본(우)이 열전 재료에 많이 응용되고 있는 추세입니다.

한국과학기술연구원(KIST)의 광전하이브리드센터 김희숙 박사 연구팀은 서울대학교 재료공학부와의 공동연구를 통해 탄소나노튜브 실을 이용한 웨어러블 열전 발전 소자에 대한 연구를 진행하고 있습니다. 탄소나노튜브는 단일 튜브만으로 충분히 튼튼하지만, 실 형태로 제작할 경우 강철의 100배에 해당하는 강도를 가지게 됩니다. 이번 연구에서는 탄소나노튜브 실을 직접적으로 직물에 바느질하여 직접적인 열전발전소자로 사용하였습니다. 기존의 연구에서는 새로운 열전발전소자를 제작하여 피부에 부착해야했지만, 탄소나노튜브 섬유를 이용한다면 기존에 입던 의류에 바느질을 통해 열전 발전이 가능합니다. 그리고 가닥 하나로 이루어진 탄소나노튜브 실을 이용하였기 때문에 각각의 소자를 연결할 금속 전극을 사용할 필요가 없어 더욱 유연하고 내부 저항이 적으며 전기전도도도 매우 높아 좋은 발전 성능을 기대할 수 있습니다.

<그림 6> 탄소나노튜브를 이용한 유연 열전 모듈의 제작 과정의 모식도입니다. 탄소나노튜브를 끊지 않고 연속적으로 N, P 형으로 도핑하여 높은 성능을 가지는 탄소나노튜브 섬유를 제작할 수 있습니다.

연구진이 개발한 열전 소자는 먼저 탄소나노튜브 실을 합성한 후, n-, p- 타입으로 도핑하여 열전소자를 제작되었으며, 이 자체를 전극으로 사용함으로써 소자의 저항을 낮춰 발전 밀도를 향상시켰습니다. 사람의 체온과 바깥의 온도 차이가 약 5도 정도 날 경우, 10.85 마이크로 와트(μW/g)의 에너지 발전 밀도를 기록하였는데, 이 발전량은 현재 보고된 유연열전재료 기반 소자 중 세계최고 수준의 결과입니다. 이 연구결과는 국제학술지 ACS Nano에 개제되었습니다.

<그림 7> 사람의 체온을 이용한 열전 발전기의 모습입니다. 적은 온도 차이를 가지지만, 높은 발전량을 보이고 있습니다.

탄소나노튜브 섬유를 기반으로 한 열전 발전소자는 매우 가볍고 기계적 성질이 뛰어납니다. 또 높은 열전 발전 성능을 보이며 다양한 섬유 등에 직접적인 적용도 가능합니다. 이런 열전 발전 소자를 활용한다면 향후 체온으로부터 웨어러블 디바이스에 직접 전원 공급이 가능하게 될 것으로 보입니다. 모든 물건이 인터넷을 통해 데이터의 공유를 하는 시대에는 이런 열전발전과 같은 차세대 에너지원이 웨어러블 디바이스의 전력원을 담당할 것입니다. 머지않은 미래에는 더 이상 스마트폰의 배터리를 충전하러 콘센트를 찾아다니는 일은 벌어지지 않겠죠?