저온에서만 작동하는 스핀 트랜지스터의 한계를 극복한 핵심기술 개발
반도체 나노선 이용하여 상온에서 높은 스핀 주입률 달성


최근 국내 연구진이 차세대 반도체 소재로 주목 받고 있는 ‘반도체 나노선’*을 이용하여 상온에서 고효율로 스핀을 주입하고 검출 성능을 획기적으로 높일 수 있는 기술을 개발했다. 연구진은 기존에 저온에서만 작동하던 한계를 극복한 상온에서 구동하는 스핀 트랜지스터 개발 가능성을 한층 높였다고 밝혔다.
*나노선 : 수십 나노미터 수준의 매우 얇은 폭을 가진 선형 구조체. 전기전자와 화학, 바이오 공학 등 첨단과학 분야에 다양하게 활용됨.
한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 장준연 소장, 스핀융합연구단 박태언 박사 연구팀은 질화갈륨(GaN) 반도체 나노선을 이용해 상온에서 10%이상의 높은 스핀 주입률과 주입된 스핀전자가 1 마이크로미터(㎛, 100만분의 1m)이상을 이동해도 스핀정보의 큰 손실 없이 반도체 채널을 이동할 수 있다는 것을 실험적으로 증명하였다. 또한 연구진은 반도체 나노선에 의해 형성된 서로 다른 결정면의 방향을 이용하여 스핀 주입신호를 제어할 수 있는 획기적 방법을 개발하였다. 연구진은 이 요소기술들을 결합하면 –200 ℃ 이하의 저온에 머물러 있던 스핀 트랜지스터의 동작온도를 상온까지 끌어 올릴 수 있어 실용화 가능성이 한층 높아질 것으로 전망했다. 이러한 연구 결과는 그동안 학계에서 주목해온 스핀 트랜지스터의 상용화를 앞당길 매우 중요한 결과로 평가받고 있다. 

<그림 1> 질화갈륨 반도체 나노선에 제작된 스핀주입소자 (a): 본 연구에 사용한 질화갈륨 나노선 기반 스핀 밸브소자와 측정방법을 나타낸 개략도 (b): 질화갈륨 나노선과 강자성체 전극간의 계면을 나타내는 개략적 단면도

기존 실리콘(Si) 반도체가 전자의 전하(-)만을 이용할 수 있었던 데 비해, 스핀 트랜지스터는 전하와 동시에 스핀을 새롭게 이용해 전자소자를 구동하는 신개념 저전력 고성능 기술로, 기존 트랜지스터에 비해 처리속도는 높은 반면 발열량이 낮다. 이 스핀 트랜지스터가 상용화될 경우 기존 반도체의 한계를 극복한 비휘발성의 초고속, 초저전력의 전자소자 개발이 가능해지므로 선진국을 중심으로 많은 연구가 진행되고 있다.  2009년 KIST 연구진에 의해 세계 최초로 스핀 트랜지스터 기술을 선보인 이래, 스핀 트랜지스터의 동작온도를 올리기 위한 많은 연구가 수행되었으나 여전히 저온에서만 작동하는 단점으로 상용화에 큰 걸림돌이 되고 있었다. 상온에서 동작하는 스핀트랜지스터를 개발하기 위해서는 10%이상의 높은 스핀 주입률과 주입된 스핀이 500 나노미터(nm) 이상의 스핀완화거리를 가져야하는데, 이번 연구진의 연구결과는 상온에서 구동이 가능한 스핀 트랜지스터의 한계를 극복하게 되었다는 의미가 있다. KIST 장준연 박사는 “반도체 스핀 트랜지스터를 개발하는데 가장 중요한 요소인 동작온도를 획기적으로 개선할 수 있는 새로운 방법을 제시한 것”이라고 전하며, “본 연구결과를 통해 입증하였듯이 저차원 나노소재를 활용한 새로운 기술은 스핀 트랜지스터의 동작온도 뿐만 아니라 소자성능 및 집적도를 극적으로 높일 것으로 예상되며, 향후 스핀트로닉스 기술 발전에 큰 기여를 할 수 있을 것”이라 밝혔다.

<그림 2> 스핀 트랜지스터의 구조와 소스 전극에서 주입된 스핀전자가 드레인 전극으로 이동하는 중 게이트 전압의 영향으로 세차운동을 하는 모습을 나타내는 개략도


본 연구는 미래창조과학부 나노소재개발사업, KIST 기관고유사업, 국가과학기술연구회 창의융합연구사업으로 수행되었으며, 국제 학술지 ‘네이처 커뮤니케이션 (Nature Communications)’ 6월 2일자(금)에 온라인 게재되었다.

* (논문명) Large spin accumulation and crystallographic dependence of spin transport in single crystal gallium nitride nanowires
        - (제1저자) 한국과학기술연구원 박태언 연구원   
        - (교신저자) 한국과학기술연구원 장준연 책임연구원

Posted by KIST PR

댓글을 달아 주세요

빛의 각운동량으로 인한 자성체의 자화방향을 초고속으로 조절하는 원리
기존보다 수천 배 빠른 초고속 스핀 메모리 소자에 응용 기대

 

스핀 메모리(MRAM)는 메모리 반도체의 패러다임을 바꿀 차세대 반도체로 각광받고 있다. 최근 국내 연구진이 기존의 스핀 메모리 동작 방법인 자기장이나 전류를 공급하여 자화방향을 바꾸는 방법이 아닌, ‘빛’만으로 자화방향을 바꿀 수 있는 기존보다 수천 배 빠른 초고속 스핀 메모리의 동작 원리를 규명했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 최경민 박사는 미국   일리노이 주립대학 안드레 슐리프(Andre Schleife) 교수, 데이비드 케이힐(David Cahill) 교수 연구팀과 3년간의 공동연구를 통해, 편광(偏光, polarization)* 된 빛의 각운동량** 방향에 따라 금속 자성체의 자화(磁化, magnetization) 방향이 움직이는 현상을 발견하고, 물리적 원리를 밝혔다. 또한 연구진은 빛을 통해 자성체의 자화 방향을 피코초(ps, 1조분의 1초)수준의 초고속으로 조절 가능한 것을 실험을 통해 규명했다.
*편광 : 편광판을 통과하여 특정한 방향으로만 진동하는 빛
**각운동량 : 회전 운동하는 물체의 운동량

<그림 1> 빛의 편광에 의한 자성체 자화 방향의 조절에 대한 도식(Schematic) 편광된 빛이 자성체에 입사되면, 역페러데이 효과(Bopt)로 인하여 자성체의 자화(M)에 회전력(torque)을 발생시킨다.

빛의 각운동량과 자성체 자화 사이의 상호 작용은 1845년 영국의 과학자 패러데이(Michael Faraday)가 발견한 현상으로, 빛이 자성체를 통과하면 각운동량이 변하는 것을 발견했고, 이 현상을 ‘패러데이 효과’라고 명명했다. 페러데이 효과는 자화의 방향을 빛으로 알 수 있는 방법을 제시하여 자기광학의 기초이자 현대 전자파 기술의 막을 열었다고 할 수 있다. KIST 최경민 박사는 자화의 방향을 빛으로 읽는 페러데이 효과의 반대개념인 ‘역(逆)패러데이 효과’로 빛의 각운동량의 방향에 따라 금속 자성체의 자화 방향이 반대로 움직이는 것을 최초로 밝혔다. 이러한 빛과 자성체 사이의 상호작용은 스핀 메모리의 새로운 동작원리를 제시한다. 기존 스핀 메모리의 작동을 위한 자화 방향 조절에는 자기장 또는 전류의 공급이 필요했으며, 속도는 나노 초(ns, 10억분의 1초) 수준이었다. 이에 비해 연구진이 규명한 스핀 메모리의 동작원리는 빛을 사용하기 때문에 훨씬 빠른 피코 초(ps, 1조분의 1초) 수준의 속도로 조절 가능하여 초고속 메모리 구동에 대한 응용 연구가 가능할 것으로 기대된다.  KIST 최경민 박사는 “자기장이나 전류가 아닌 새로운 방법에 의한 스핀 메모리 동작에 관한 연구가 필요한 시점이다”라고 말하며, “본 연구결과가 제시하는 빛과 자성체의 상호작용은 초고속 스핀메모리에 응용될 수 있다”고 밝혔다.

<사진 1> KIST 최경민 박사가 빛의 각운동량으로 자성체의 자화방향을 초고속 (피코초, ps)으로 조절하는 원리를 실험하고 있다.

본 연구는 미래창조과학부(장관 최양희) 지원으로 KIST 기관고유사업과 국가과학기술연구회(NST) 창의형 융합연구사업으로 수행되었으며, 연구결과는 과학분야 세계적인 권위의 저널인 ‘네이처 커뮤니케이션즈(Nature Communications)’에 4월 18일(화)자 온라인 게재되었다. 

 

 * (논문명) Optical-helicity-driven magnetization dynamics in metallic ferromagnets    
          - (제1저자) 한국과학기술연구원 최경민 선임연구원       
          - (교신저자) 한국과학기술연구원 최경민 선임연구원

Posted by KIST PR

댓글을 달아 주세요