백금 대체할 이리듐 기반 합금 촉매 개발, 

연료전지 내구성 향상시켜 수명 연장한다.
- 양자역학계산과 나노촉매 합성 기술로 설계 및 성능 검증,

연료전지 수명 향상 기대
- 차세대 에너지 변환 소재의 설계 및 제조 기술 발전에 기여할 것으로 전망

 

연료전지는 수소와 산소의 전기화학 반응에 의한 전기 에너지 발생 과정에서 물만 배출하여 차세대 친환경 에너지원으로 각광받고 있다. 연료전지는 1960년대부터 우주발사체 전원 등에도 이용되어 왔는데, 에너지 발생을 위한 촉매로 전기화학적 활성이 우수한 백금기반의 나노 입자를 사용하는 것이 일반적이었다. 최근 국내 연구진이 양자역학 계산(Density Functional Theory)과 나노 촉매 합성 기술을 사용하여 백금을 대체할 수 있는 이리듐(Ir, Iridium) 기반 합금 촉매를 개발하여 연료전지 내구성을 향상시키는데 성공했다고 밝혔다.

유성종 박사함형철 박사

한국과학기술연구원(KIST, 원장 이병권) 연료전지연구센터 유성종, 함형철 박사팀은 양자역학 계산을 사용하여 소재를 구성하는 원자와 전자 구조의 물리·화학적 제어를 통해 촉매 내부에 크롬이 추가된 이리듐 표면 단층 촉매를 도출하였다. 또한 이를 나노 수준의 전기화학 실험을 통해 성공적으로 합성하여 기존 순수 이리듐에 비해 성능이 약 12배 이상 증가하고 안정성은 백금 수준 이상으로 증가했다는 것을 확인하였다.

 

일반적으로 고분자 전해질 연료전지에서는 에너지 발생의 핵심 역할을 하는 촉매로 전기화학적 활성이 우수한 백금 기반의 촉매를 사용해왔으나, 비싼 가격과 소재 자체의 안정성에 대한 단점이 있었다. 연료전지용 소재는 장시간 산성 환경에 노출되는데, 백금은 촉매 전체의 내구성을 감소시키므로 안정성 측면에서 한계를 가지고 있었다.

<그림 1> 촉매 표면 원자-원자 길이, 표면 원자의 d-오비탈 전자 점유율 엔지니어링을 통한 표면 단층 합금 촉매의 컴퓨터 설계, 나노 촉매 합성 기술을 통한 촉매 성능 검증

KIST 연구진은 소재 안정성이 뛰어나지만 성능이 낮은 것으로 알려진 이리듐(Ir, Iridium)을 활용하여, 다양한 전이금속을 첨가하고 촉매 내부 및 표면의 원자 분포를 변화시켰다. 그리고, 촉매 성능과 내구성을 양자역학 계산을 사용하여 예측하여본 결과, 촉매 내부에 크롬이 주입된(Doping) 이리듐 표면 단층 촉매가 산소 친화력을 감소시키고 동시에 내구성을 향상시켜 연료전지의 전기화학적 산소 환원 반응에 있어서 우수한 특성을 갖는다는 것을 밝혀냈다. 연구진은 연료전지 촉매로는 거의 사용되지 않았던 이리듐을 원자 및 전자 레벨 수준에서의 표면 및 내부 전자 구조 제어 기술을 통해 크롬 합금 촉매에 사용하게 되면 안정성 및 활성이 증가하여 연료전지용 촉매 소재로 활용 가능하다는 것을 밝혔다.  
 
연구진은 촉매 내부에 크롬 주입(Doping)으로 이리듐 기반 합금 촉매의 산소 친화력 감소 및 산소 환원 반응성과 내구성 증가로 이어지게 되는데, 연구진은 양자역학 계산을 통해 촉매의 성능 및 안정성의 증가를 확인하였고, 계산과학적인 관점에서 앞으로의 산소환원 반응용 촉매 설계원리를 제시하여 연료전지 촉매의 확장성에 기여할 수 있다는 점에서 큰 의의를 지닌다.  

 

KIST 함형철 박사는 “이번 연구는 연료전지 촉매 소재의 활성과 내구성 향상에 대한 원리 규명 및 초고속 후보 물질의 탐색에 있어서 양자 역학 계산의 중요성을 확인해주는 결과”라 말했다. 또한 KIST 유성종 박사는 “향후 차세대 에너지 변환 소재의 설계 및 제조 기술 발전에 기여할 수 있을 것으로 기대한다.”고 연구 의의를 밝혔다.

 

본 연구는 과학기술정보통신부(장관 유영민) 지원을 바탕으로 한 KIST 기관고유사업 및 한국에너지기술평가원, 한국연구재단의 지원으로 수행되었으며, 연구결과는 촉매 분야의 국제 학술저널인 ‘Applied Catalysis B: Environmental’(IF : 9.446, JCR 상위 1.020%) 최신호에 온라인 게재되었다.

 

 * (논문명) Computational and Experimental Design of Active and Durable Ir-based Nanoalloy for Electrochemical Oxygen Reduction Reaction
 - (제1저자)  한국과학기술연구원 조진원 연구원
 - (교신저자) 한국과학기술연구원 함형철 박사, 유성종 박사
    

Posted by KIST PR

댓글을 달아 주세요

친환경 수소 연료전지 성능·효율 증대시킬 비밀 찾았다 

 - 나노 구조 박막 고체전해질의 전기전도도 향상 매커니즘 원리 규명
 - 내부응력 조절을 통한 새로운 설계방안 확립 및 고성능 연료전지 개발 기대

 

연료전지에 들어가는 전해질 중 고체전해질은 높은 선택적 이온 전도 특성과 기계·전기화학적 안정성 때문에 친환경 에너지 전환 및 저장시스템으로 각광받고 있는 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC) 등 다양한 차세대 에너지 분야에 사용되고 있다. 그러나 이러한 친환경 에너지시스템에 필수적으로 사용되고 있는 박막형 고체전해질에서 나노구조재료의 실효성에 대한 검증문제로 실용화에 어려움을 겪고 있었다. 최근 국내연구진이 그간 논란이 되어온 전기전도도 향상 메커니즘을 최초로 규명하고, 이를 기반으로 고체전해질의 물성을 향상시킬 수 있는 원자스케일의 새로운 설계 방안 및 기법을 제시했다고 밝혔다.

 

이종호 박사

한국과학기술연구원(KIST, 원장 이병권) 고온에너지재료연구센터 이종호 박사팀은 박막형 고체 산화물 전해질의 내부응력을 조절하여 기존 재료보다 높은 전기전도도를 가지는 고체전해질을 개발하였다.

그동안 재료의 나노구조화를 통한 물성 향상 현상에 대한 결과는 많이 보고되었지만, 실험적으로 제어하기 어려운 변수들과 재현성이 없는 실험 결과로 인해 고성능의 나노구조재료를 실제 에너지 시스템에 적용하는데 한계가 있었고, 고성능이 발현되는 정확한 메커니즘 조차 규명하는데 어려움이 있었다.

 

KIST 연구진은 전도성 기판을 이용하여 전기전도도 측정 시 실험적 오차를 발생시키는 요인들을 효과적으로 제거할 수 있는 실험기법을 설계하고, 나노구조에서 발생하는 내부 응력을 정량적으로 평가할 수 있는 고분해능의 분석장비를 도입하여 나노구조 고체전해질의 이온전도도를 박막의 내부응력 제어를 통해 효과적으로 향상시킬 수 있는 새로운 설계 기법을 제시하였다.  

 

<그림 1> (좌측)박막 고체전해질의 내부응력에 의한 산소이온전도도 향상 메커니즘 모식도 (우측)실제 박막 내 작용하는 응력과 산소이온전도 에너지장벽 간 상관관계 실험결과

KIST 이종호 박사팀은 연료전지나 배터리의 내부에 들어가는 고체전해질을 박막으로 성장시켰을 때 발생하는 응력을 이용하면, 재료의 원자간 거리를 제어할 수 있고 이를 통해 고체전해질 내에서 이온이 이동할 때 필요한 에너지장벽을 낮춰 기존 고체전해질 고유의 물성 보다 약 10배 이상 높은 전기전도도를 보여 고성능의 박막 고체전해질을 개발할 수 있다고 밝혔다.

 

본 연구를 주도한 KIST 이종호 박사는 “이번 고성능 박막 고체전해질 개발을 통해 원자스케일에서 재료의 물성을 설계하는 새로운 패러다임을 제시한 연구로, 고성능의 박막 고체전해질을 실제 친환경 에너지 시스템에 적용하고, 기존보다 획기적으로 향상된 성능의 연료전지를 개발할 수 있을 것”이라고 밝혔다.

 

본 연구는 과학기술정보통신부(장관 유영민) 기후변화대응기술개발사업의 지원으로 수행되었으며, 연구결과는 나노기술 분야의 저명 학술지 ‘나노레터’ (Nano Letters, (IF : 12.712, JCR 상위 3.45%)) 최신호에 게재되었다.


* (논문명) Identification of an Actual Strain-Induced Effect on Fast Ion Conduction in a

             Thin-Film Electrolyte
          - (제1저자) 한국과학기술연구원 안준성 학생연구원(박사과정)
          - (교신저자) 한국과학기술연구원 이종호 책임연구원

Posted by KIST PR

댓글을 달아 주세요

 

4차 산업혁명을 견인할 전지 기술

 

“우편 마차를 여러 대 연결한다고 기차가 될 수는 없다.” 혁신의 본질을 이야기할 때 빼놓지 않고 등장하는 경제학자 조지프 슘페터의 이야기다. 4차 산업혁명의 새로운 패러다임과도 맞닿아 있다. 4차 산업혁명의 핵심은 바로 '초연결'이다. 초연결사회란 사람과 사물 및 공간이 인터넷을 매개로 연결돼 정보의 생성과 수집, 공유와 활용이 이뤄지는 사회다. 우리나라는 일찍이 초고속 통신, 지식 전달 시스템을 구축해 세계 최고 정보통신 인프라를 갖췄다. 그러나 문제는 바로 '초'연결로 나아가지 못하고 있다는 데 있다.

 

초연결 사회는 단순히 새로운 차원의 연결만을 의미하지 않는다. 기존의 연결 사회를 뛰어넘게 하는 모든 것을 의미한다. 시간이나 장소와 관계없이 초연결을 가능케 하는 사물인터넷(IoT), 빅데이터와 연결되는 통신 시스템, 로봇 등 스마트 기기를 구동하는데 적합한 에너지원의 개발이 요구된다. 차세대 이차전지는 4차 산업혁명 시기에 수요가 폭증할 것으로 보인다. 새 시대에 적합한 에너지원의 중요성 때문이다. 산업혁명의 역사를 보더라도 인류는 그전까지 사용하지 않은 새로운 에너지원을 사용하는 방향으로 발전했다. 수렵 채집에서 농업혁명이 발생하면서 가축, 바람, 물과 더 많은 사람들의 집약된 노동력을 필요로 했다. 증기기관이 발명되면서 인류는 기존에 활용하던 자원 대신 어마어마한 양의 석탄 에너지를 사용하기 시작했다. 이후 3차 산업혁명에 이르러 인류는 또다시 전기 에너지의 수요를 폭증시켜 왔다. 초연결 사회에서는 어떠한 새로운 에너지원을 주로 사용할 것인지는 아직도 미지수다. 에너지 소비와 생산은 동전의 양면과 같다. 기존에는 더 많은 에너지원을 발굴함으로써 수요에 대응했다. 이제는 잉여 전기의 저장, 태양·화학·자연 에너지 등 새로운 에너지원의 발굴로 기존 패러다임에서 벗어나는 추세다. 폐열을 통해 전기를 발생시키는 에너지 재활용 분야도 활성화되고 있다. 에너지 생산량을 떠나 얼마나 친환경 에너지를 생산하고 소비할 것인가 하는 관점도 중요하다.

 

4차 산업혁명에서의 에너지 수요는 생산과 저장에서 과거와는 전혀 다른 패러다임을 요구한다. 현재의 발전 체계는 발전소 중심의 대규모 전력 생산과 플러그인 방식의 대량 소비로 요약할 수 있다. 그러나 4차 산업혁명은 이러한 플러그인 방식의 소비로부터 탈피하고 있다. 예를 들면 스마트폰이나 태블릿 PC, 전기자동차와 인공지능(AI) 로봇 모두 시간과 공간의 제약 없이 에너지를 소비할 수 없다. 즉 플러그에 연결된 상태에서는 초연결된 사회로 나아갈 수 없다. 이에 따라서 이러한 기기들은 대부분 고효율의 에너지저장장치(ESS), 즉 배터리에 의존하거나 자가발전을 통해 에너지를 공급받게 된다. 배터리가 시간이나 공간과 관계없이 환경 친화형으로 생산된 전기 에너지를 무한정 공급받아 필요한 만큼 저장하고 효율 높게 활용할 수 있는 신기술을 개발할 수 있을지가 관건이다. 기존의 리튬이온계 이차전지 개념을 넘어서는 혁신 사고의 전환이 요구된다. 전력 생산 및 저장 기술을 과감하게 융합한 신개념의 융합전지 개발이 필요하다. 기존의 이차전지는 소재 개발 시 부닥치는 몇 가지 문제점이 있다. 이론상 가능한 용량의 한계로 인해 전지의 부피를 키우거나 단위 중량당 용량을 증설해야 하는 한계, 주기 충전의 필요성, 대용량화에 따른 안전성 문제 등이다.

 

춘계전지학회와 한국과학기술연구원(KIST)도 19일까지 '4차 산업혁명에서 전지의 역할'을 주제로 토론회를 개최한다. 정보 산업, 의료 산업, 서비스 산업에서의 전지 관련 연구 발표와 전문가 토론이 있을 예정이다. 차세대 에너지 저장 기술과 경쟁력을 확보하는 계기가 되기를 기대한다.

[전자신문 바로가기]

Posted by KIST PR

댓글을 달아 주세요

기존의 백금 촉매 대체가능한 로듐 합금 촉매 개발,

연료전지 상용화 기대
전자레인지(극초단파)의 원리 응용 친환경·초간편 양산 촉매 기술
 

<그림> 로듐 합금 나노 입자 표면에서의 전기화학적 반응 모식도

알칼리 연료전지는 수소와 산소의 전기화학 반응에 의한 전기 에너지 발생 과정에서 물만 배출하여 차세대 친환경 에너지원으로 각광받고 있다. 알칼리 연료전지는 1960년대부터 우주발사체 전원 등에 이용되어 왔으며, 에너지 발생을 위한 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 최근 국내 연구진이 고가의 백금 대신 로듐(Rh, rhodium) 합금을 간편히 제조하여 연료전지 성능을 향상시키는데 성공했다고 밝혔다.  

한국과학기술연구원(KIST, 원장 이병권) 연료전지연구센터 유성종 박사팀은 서울대학교 기초과학연구원 나노입자연구단 성영은 교수와의 공동연구를 통해, 최근 전 세계적으로 차세대 연료전지로 각광을 받고 있는 고체 알칼리막 연료전지에 사용가능한 고성능 비백금계 로듐기반 나노 촉매를 개발했다고 밝혔다. 일반적으로 알칼리 연료전지에는 에너지 발생의 핵심 역할을 하게 되는 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용해왔으나, 높은 의존도 문제와 더불어 소재 자체의 안정성에 대한 한계가 제기되어 왔다. 연료전지용 소재는 장시간 산화 환경에 노출되기 때문에 소재의 안정성 및 내구성에 대한 엄격한 수준의 소재 기술이 요구되므로 촉매 전체의 내구성을 감소시키는 백금 및 팔라듐 합금은 치명적인 단점이 있었다.  이에 연구진은 소재 안정성이 뛰어나지만 성능이 낮은 것으로 알려진 로듐에 대해 연료전지용 촉매 연구를 진행한 결과, 로듐과 주석 합금 나노 입자가 연료전지의 전기화학적 산소 환원 반응에 있어서 우수한 특성을 갖는다는 것을 밝혀냈다. 현재까지 연료전지 촉매 분야에서 로듐은 백금의 보조 촉매 수준으로 사용되어 왔으나, 나노미터(nm) 수준에서의 재료의 표면 제어 기술을 사용하게 되면 고안정성 및 고활성 연료전지용 촉매 소재로 활용 가능하다는 것이 증명되었다. 연구진은 로듐과 주석의 합금 구조가 표면의 구조 변화로 활성점이 증대되면서 이용률이 상승하여 로듐 입자 대비 10배 이상 성능이 향상되고, 기존 백금 촉매 대비 4배의 성능이 향상됨을 밝혀냈다. 특히 개발된 촉매는 기존 합성법이 적게는 12시간, 많게는 48시간 소요되던 것과 달리, 일반 가정에서 사용하는 전자레인지와 동일한 원리(극초단파, micro wave)를 이용하여 10분 내에 간편히 제조할 수 있는 기술로 개발되었다. 기존 연료전지용 소재 합성법과 달리 화학 첨가물 투입 및 추가 공정 과정이 배제되기 때문에, 신속한 소재 제조 기술 및 공정 단순화 기술 결합이 가능하였다. 그러므로 시간당 촉매 제조 생산량이 높아 향후 소재 생산 공정에 있어서도 상업적 장벽을 크게 완화시킬 것으로 전망된다. KIST 유성종 박사는 “이번 연구는 연료전지용 촉매 성능 향상 뿐 아니라 기존 연료전지용 촉매에 대한 한정적 선택 환경을 극복하고 새로운 소재의 촉매 설계가 가능해졌다는 점이 핵심”이라 말하며, “향후 차세대 에너지 변환 소재의 설계 및 제조 공정 기술 발전에 기여할 수 있을 것으로 기대한다”라고 연구 의의를 밝혔다.

 

이번 연구는 과학기술정보통신부(장관 유영민)의 신재생에너지핵심기술사업 한국연구재단, 산업통상자원부 지원으로 수행되었으며, 촉매 분야의 국제 학술저널인 미국화학회 촉매지(ACS Catalysis, IF : 10.614)에 9월 1일 온라인 게재되었다.

 

 * (논문명) Rhodium–Tin Binary Nanoparticle—A Strategy to Develop an Alternative Electrocatalyst for Oxygen Reduction
     - (제1저자) 한국과학기술연구원 안민제 박사(post-doc)
     - (교신저자) 한국과학기술연구원 유성종 박사, 서울대학교 성영은 교수

Posted by KIST PR

댓글을 달아 주세요

실리콘 나노입자 내장(embedding)한 음극재로 부피 팽창 억제 
500회 이상의 안정적인 충·방전 가능,

기존 흑연 음극재 성능 뛰어넘어

 

리튬이온전지는 1990년대 소니(SONY)에 의해 최초로 상용화되어 현재 휴대폰, 노트북의 소형 전원에서 에너지저장시스템(ESS, Energy Storage Systems) 등의 대용량 전원까지 활용되고 있으며, 그 수요가 증가하고 있다. 이에 리튬이온전지의 성능(에너지밀도)을 증대시키기 위해 양극 소재에 대한 개발이 활발히 진행되어 고용량의 양극 소재가 적용되고 있으나, 음극 소재는 상용화 후 30년 가까이 지난 지금까지도 흑연 소재 음극재(약 370mAh/g)를 사용하고 있어 한계에 가까워진 실정이다. 최근 국내 연구진이 흑연 음극재를 대체할 실리콘 기반의 음극재를 개발하여 리튬이온전지의 성능(에너지 밀도)과 수명 특성을 획기적으로 향상시켰다고 밝혔다.

한국과학기술연구원(KIST, 원장 이병권) 녹색도시기술연구소 에너지융합연구단 정훈기 박사 연구팀은 기존 실리콘 기반 음극재 상용화의 기술적 장벽이었던 부피 팽창 문제를 획기적으로 해결하는 방법으로 단단한 다공성 구형 탄소 구조체에 실리콘 나노입자를 내장(embedding)시킨 음극재를 개발하였다. 이론적으로 실리콘 기반 음극재는 상용화된 흑연계 음극재보다 10배 이상의 높은 용량을 가진다고 알려져 있으며, 세계적으로 활발한 연구가 진행되고 있다. 그러나 실리콘 음극재는 충전과 방전을 반복함에 따라 약 4배 정도의 부피 변화를 동반하고 심지어 입자가 부서지거나 전극이 벗겨짐으로 인해 전지 성능을 급격히 감소시키는 문제가 상용화에 걸림돌이 되어왔다. 그동안 리튬이온전지로의 상용화를 위해 실리콘 음극재의 부피팽창을 억제하는 연구로는 전도성 소재의 표면 코팅, 다공성 실리콘 입자 기술 등 많은 공정을 거치는 방법으로 고성능과 안정된 충·방전 성능을 구현해왔다. 그러나 KIST 연구진은 간단한 수열합성방법이라는 한 번의 공정만으로 단단한 구형의 다공성 탄소 입자 내에 50 나노(nm) 이하의 실리콘 나노 입자를 캡슐화 및 고정화시켜 내장함으로서 ‘실리콘 내장 탄소 복합 재료’(Silicon Nanoparticles Embedded in Micro-Carbon Sphere Framework)를 개발하였다. 연구진은 ‘실리콘 내장 탄소 복합재료’를 음극재로 이용하여, 충·방전 시 실리콘 나노 입자의 부피 팽창을 한정된 공간인 다공성 탄소 입자 기공 내에 일어나도록 유도함으로서 전극의 벗겨짐 현상 또는 부피 팽창을 억제하여 성능 저하를 최소화 시켰다. 동시에 반복되는 충·방전을 통해 실리콘 나노 입자의 부피가 팽창하면서 점점 더 작은 크기로 부서져, 다공성 탄소 기공 내에 안정적인 위치로의 재배치가 이루어지게 하여 부피팽창 없이 500회(cycle) 이상 안정적인 충·방전이 가능한 성능을 구현하였다. 또한 연구진은 개발된 실리콘 음극재가 기존의 흑연계 음극재의 성능에 비해 4배 가량 상회하는 것을 확인함으로서, 배터리의 오랜 수명과 고출력을 구현하는데 성공했다. 본 연구를 주도한 KIST 정훈기 박사는 “이번 연구는 실리콘 음극재의 구조적 안정성과 고성능을 동시에 확보한 결과”라고 말하며, “안전하고 오래 쓸 수 있는 리튬이온전지용 실리콘 음극재의 상용화를 앞당겨, 향후 고용량 리튬이온전지가 전기자동차와 에너지저장시스템(ESS)으로의 적용을 기대한다.”고 밝혔다.

<그림 1> 제조된 실리콘계 음극재 소재의 미세구조, 충방전시 실리콘 나노입자의 거동 분석 결과 및 모식도, 리튬이온전지 성능 특성 평가 결과

본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 영펠로우(Young Fellow) 사업, 한국연구재단의 중견연구자 지원사업(과제책임자, KIST 정훈기) 등을 통해 수행되었으며, 연구결과는 나노기술 분야의 국제학술지 ‘Nano Letters’(IF:12.712)에  8월 28일 온라인 게재되었다.

 

 * (논문명) Self-Rearrangement of Silicon Nanoparticles Embedded in Micro-Carbon Sphere Framework for High-Energy and Long-Life Lithium-Ion Batteries
    - (제1저자)  한국과학기술연구원 정민기 학생연구원(한양대학교 박사과정)
    - (교신저자) 한국과학기술연구원 정훈기 박사

Posted by KIST PR

댓글을 달아 주세요

KIST-서울대 공동연구팀, 초경량에 형상 변형 가능한 연료전지 기술 개발
차세대 드론용 에너지원으로 각광, 체공시간 획기적으로 늘릴 핵심 기술

 

‘연료전지’는 연료로 수소와 공기를 사용하며, 전기를 발생하고 나오는 부산물로 기존의 내연기관과 다르게 ‘물’ 만을 발생해 친환경 재생에너지로 각광받고 있다. 최근 국내 연구진이 친환경 미래 에너지원으로 주목받는 연료전지에 초경량적 설계와 유연성을 접목한 기술을 개발했다. 현재에도 상용화를 위한 기술개발이 꾸준히 이루어지고 있는 시점에서 또 하나의 기술적 장벽을 뛰어넘은 것으로 평가받고 있다. 한국과학기술연구원(KIST, 원장 이병권) 연료전지연구센터 유성종 박사팀은 서울대학교 멀티스케일 에너지시스템연구단 최만수 교수(단장), 차석원 교수와의 공동연구를 통해 초경량의 유연한(Flexible) 연료전지 스택*을 개발하고 실제 작동 시연에 성공했다고 밝혔다.
*스택(Stack) : 여러 개의 연료전지를 직렬로 배열하여 전압을 높이는 연료전지의 구조.

최근 전자기기 업체들은 점차 기기들에 유연성을 부여하여 형상을 자유롭게 변형 가능하게 하며, 변형에 따른 기기의 성능 감소를 최소화하는 추세이다. 그러나 이러한 유연 전자기기들이 모두 웨어러블 전자기기**나 피부이식형 전자기기와 같은 휴대용 전자기기에 활용되려면 전력공급원 또한 유연성을 지녀야 활용성이 높아진다. 따라서 현재 가장 많이 쓰이는 리튬이온배터리에 유연성을 부여하려는 연구가 있었으나 리튬이온배터리는 열역학적으로 더 이상의 동 부피 대비 에너지 저장량을 늘리기는데 한계가 있어 근본적인 대체 에너지원의 개발이 필요했다.
**웨어러블(Wearable) 전자기기: 차세대 미래 전자기기 기술로 착용가능한 의류, 액세서리등을 전자기기로 만든 형태. 의류 내부로 설치될 전자기기 또한 유연해야 하며, 이미 군용 등에 본 기술이 적용되고 있음.

유연성을 활용한 원통형 연료전지 스택 및 이의 실제 작동 사진

본 연구를 주도한 KIST 유성종 박사는 “현재 체공시간에 많은 한계를 지닌 드론에 본 초경량 유연 연료전지 스택을 적용할 경우, 기존 배터리 무게 기준 체공시간의 세 배 이상 늘어날 것”이라고 말했다. 또한 서울대학교 차석원 교수는 “연료전지는 친환경성 뿐만 아니라 에너지 저장량에서도 여타 에너지 저장기기에 비해 많은 장점을 지닌다”며 “연료전지 분야의 미래를 대한민국이 선도할 수 있는 초석이 될 것”이라 말했다. 서울대학교 최만수 교수는 “다양한 분야의 연구자들이 모여 분야융합을 통해 이뤄낸 값진 결과”라고 밝혔다. 본 연구에는 KIST 박사후연구원 박태현, 강윤식, 서울대학교 장세근 박사과정 학생이 공동 1저자로 참여하였다.

 

본 연구는 미래창조과학부의 글로벌프론티어사업과 KIST 기관고유사업, 한국연구재단 중견연구자지원사업으로 수행되었으며, 네이처 자매지인 ‘NPG 아시아 머터리얼즈(NPG Asia Materials, IF : 8.772)’에 5월 26일(금) 온라인 판에 게재되었다.

 

* (논문명) A rollable ultra-light polymer electrolyte membrane fuel cell

       - (공동 제1저자) 한국과학기술연구원 박태현 박사후연구원
                             한국과학기술연구원 강윤식 박사후연구원, 서울대학교 장세근 박사과정
       - (공동 교신저자) 서울대학교 기계항공공학부 최만수 교수
                              서울대학교 기계항공공학부 차석원 교수
                              한국과학기술연구원 유성종 책임연구원

Posted by KIST PR

댓글을 달아 주세요

[연합뉴스] 고려대-KIST 연구진,

고성능 수소이온 세라믹 연료전지 개발

 

서울=연합뉴스) 이효석 기자 = 고려대학교는 기계공학과 심준형 교수팀이 한국과학기술연구원(KIST) 고온에너지재료연구센터 손지원 박사팀과 함께 세계 최고 수준 성능의 수소이온 세라믹 연료전지를 개발했다고 23일 밝혔다.[...]

 

[연합뉴스 기사보기]

 

[다른 언론사의 보도내용이 궁금하시면 아래의 언론사 명을 클릭하세요]

 

 투데이에너지

한국일보 

동아사이언스 

대덕넷 

TV조선 

조이뉴스24 

뉴스1 

대전일보 

매일경제 

 천지일보

머니투데이 

뉴스1 

 

Posted by KIST PR

댓글을 달아 주세요

[머니투데이] [기고] 10년 명운 좌우할 리튬이차전지

 

우리나라 전지산업의 향후 10년 명운은 리튬이차전지(LIB)의 에너지밀도를 결정하는 양극 및 음극소재 기술 확보 수준에 따라 좌우될 것이다. 리튬이차전지시장 규모는 2015년 212억달러에서 2020년에는 전기차, 에너지저장장치, 모바일시장을 포함한 이동기기 등의 급격한 신장으로 600억달러를 넘게 될 전망이다. 이중 양극 및 음극소재 시장은 작년 45억달러에서 2020년에는 126억달러로 가파르게 증가해 차세대소재산업의 핵심으로 부상하고 있다.

[원문보기]

Posted by KIST PR

댓글을 달아 주세요

미래부, 냉·난방 연료전지 빌딩 등 '기후산업육성모델' 신규 과제 추진

 

미래창조과학부에서 지난달 23일 기후산업육성모델 2개과제를 신규로 추친한다고 밝혔습니다. 이중 냉난방이 가능한 연료전지 빌딩기술개발을 한국과학기술연구원에서 진행하기로 하였습니다. 관련된 기사 아래 링크에서 확인해보시죠

 

[전자신문 기사보기]

 

[다른 언론사의 보도내용이 궁금하시면 아래 언론사 명을 클릭하세요]

 이뉴스투데이

아주경제 

정책브리핑 

대덕넷 

머니투데이 

 

Posted by KIST PR

댓글을 달아 주세요

[기획] 고체산화물연료전지(SOFC), 상용화 어디까지 왔나

 

전 세계적으로 에너지에 대한 관심은 동서고금을 막론하고 지속되어왔습니다. 최근에는 어떻게 하면 더 효율이 높고 친환경적이며 안전한 에너지원을 확보하는가에 대한 연구가 활발히 진행되고 있습니다. 단순히 자연에 존재하는 에너지원을 활용하는 것이 아니라 전지의 형태로 개발하여 에너지를 생산하고 충전하고 저장할 수 있는 것이죠. 아래 가스신문의 기획기사에서 그 현황을 살펴보세요

 

[가스신문 기사보기] 

 

Posted by KIST PR

댓글을 달아 주세요