안녕하세요! 한국과학기술연구원 서포터즈 5기 김용민, 최나영입니다!  앞으로 활동기간동안 여러분과 만날 수 있게 되어 너무 기쁩니다!  저희는 KIST인들이 어떤 연구를 하는지부터 시작해서 KIST인이 된 계기, 배경뿐만 아니라 취미까지! 그야말로 KIST인들의 머리부터 발끝까지 알아볼 예정입니다.  저희가 이번에 처음으로 만나본 KIST인은 바로 뇌과학분야와 로보틱스분야의 융합에 선두에 계신 ’바이오마이크로시스템연구단의 양성욱 박사님’이십니다!!(짝짝)
양성욱 박사님은 초소형 로봇을 이용한 바이오 분야나 의료분야에 관련된 응용연구를 수행하고 계시는 데요. 먼저 영상으로 만나보시죠!

 
Q1. 안녕하세요! 박사님, 먼저 간단하게 자기소개 부탁드립니다!

 

저는 바이오마이크로시스템연구단 양성욱입니다. 현재는 초소형 로봇을 이용한 바이오 분야나 의료분야에 관련된 응용연구를 수행하고 있습니다.  KIST는 2006년부터 2010년까지 있다가 2010년부터 2015년까지는 카네기멜런대학교에서 로보틱스 분야 박사학위를 전공하고 2015년에 복직해서 근무하고 있습니다.

 

Q2. 로보틱스를 전공하신 박사님께서 초소형 로봇 기술을 이용해 뇌과학분야에 도전하신 것이 굉장히 흥미롭습니다.  이렇게 다른 분야를 선택하게 되신 배경에는 어떤 일들이 있었나요?

 

기본적으로 관심이 있었던 분야는 기계와 전기&전자 분야였습니다.  그래서 관련된 실험실에 들어갔고 새롭게 정밀 광학측정 시스템을 구축하는 연구를 하였습니다.  연구를 위해서 과학 분야, 시스템에 관련된 프로그램을 공부하게 되면서 분야가 조금씩 변했습니다.  더욱이 KIST에서는 마이크로 로봇형태인 심장 세포를 올려놓으면 기어가는 초소형로봇을 본격적으로 연구하였습니다.  박사학위 들어가서는 컴퓨터 사이언스와 가까운 조금 더 제어 적인 연구들을 결합하면서 조금씩 분야가 변해간 것 같습니다. 
 

Q3. 박사님께서는 로보틱스를 전공하셨고, 다른 박사님들도 전기전자공학, 재료공학으로 연구 개발 응용 분야를 뇌과학/신경과학과의 새로운 접목을 꾀한 것은 대단히 도전적인 시도라고 생각하는데요. 뇌과학연구소 참여 초기에는 상이한 전공자들 간의 소통에 애로 사항들이 종종 있었다고 들었습니다. 어떤 애로 사항들이 있었나요?

 

가장 문제가 되었던 것은 기본적으로 서로 가지고 있는 백그라운드와 쓰고 있던 용어가 달라서 소통하는 데 어려움이 있었다는 점입니다.  두 번째로는 공학 분야와 기초과학 분야의 연구방법이 달라 접근방식이 다르다는 점이었습니다.  저희 쪽에서는 주로 사회에 흩어져 있는 문제를 해결해 내는 과정인데, 기초과학을 연구하시는 분들은 세상에 알려지지 않은 문제들을 밝히기 위하여 가정을 새우고 실험을 통하여 풀어내 가는 방법론적인 차이가 있어요.  같이 연구를 하게 되면서 서로 이해하고 보조해주는 역할을 하기 위해 서로가 노력 하고 있습니다.

 

Q4. 뇌신경과학 분야에서 초소형 로봇 기술은 기존의 방법과 비교해 어떤 장점이 있을까요? 

 

뇌신경과학 분야에서 초소형 로봇 기술은 기존에는 뇌를 이해하기 위해서 생체정보를 수집하고 해석하는데 초점이 맞춰져 있었어요.  근데 이제는 그것을 뛰어넘어서 컨트롤하고 변환해서 동작을 수행 할 수 있도록 하고 있습니다.  예를 들어서 쥐의 머리위에 초소형 로봇을 올려놓고 뇌 신호를 제어해 움직임을 컨트롤 할 수 있는 연구를 진행중입니다.
또한 예전에는 뇌신호를 분석하기 위해 사람의 컨트롤로 쥐의 머리위에 전극을 삽입하는 힘든 작업을 하였는데, 지금은 로봇이 그런 과정을 대신 하기 때문에 동물입장에서도, 인간입장에서도 편하게 연구를 할 수 있게 되었습니다.  

 

Q5. 뇌 신경신호 측정을 위한 전극 이동용 마이크로 매니퓰레이터를 발명하셨다고 하는데, 마이크로 매니퓰레이터에 대해 설명 부탁드립니다!

먼저 마이크로 매니퓰레이터를 이용해 머리에 전극을 이식해서 생체정보를 뽑아냅니다.  뽑아낸 정보를 통해 어떻게 움직이겠다, 어디로 움직이겠다는 것을 기기학습을 통해 인식시킵니다.  인식된 학습을 바탕으로 생각만으로 로봇을 움직일 수 있게 하는 것이 마이크로 매니퓰레이터의 주요 기능입니다.  이를 통해 전신마비환자도 생각만으로 몸을 움직일 수 있게 하도록 신경을 제어할 수 있습니다. 
그런데 이런 기계 하나에도 수 많은 기술들이 들어가게 됩니다. 신경신호를 분석할 수 있는 기술, 컴퓨터 사이언스에서 알고리즘을 생성하는 기술, 전극이 생체내에 들어갔을 때 안정적이게 하는 생체적합성 기술, 기계를 지고 다닐 수 있게 초소형으로 만들 수 있는 기술등이 복합적으로 작용한다고 보면 됩니다. 

 

Q6. 2015년도 IEEE/ASME Transactions on Mechatronics 저널에 출판한 논문으로 2016년도 IEEE/ASME Best Mechatronics Paper Award를 지난 6월 20일에 수상하였습니다만, 박사님 논문의 간략한 컨셉과 수상을 하게된 계기가 어떠한 부분이라고 혹시 생각하시는지요?

기존에 논문은 큰 시스템에 관련된 것은 많지만, 초소형화 시스템에 걸맞은 알고리즘은 별로 없었습니다.  현재 상용화되어있는 큰 것을 초소형화 시켜 동작하기 위해서는 기능적으로 고려할 것들이 많습니다.  소형모터들은 힘이 약하고 센서를 가져다 쓰기도 어렵습니다.  그래서 이 논문에는 단순히 크기만 소형화하는 것이 아니라 초소형 모터들의 작은 힘을 고려해서 어떻게 구조를 만들면 최대의 힘을 낼 수 있을지 크기, 길이를 최적화하는 내용이 담겨있습니다.  이런 디자인을 최적화하는 기술을 통해서 초소형 모터에 기반을 둔 최적화 설계 알고리즘을 기반으로 매니퓰레이터 디자인하고 성능 검증하는 내용을 담고 있습니다.

 

Q7. KIST에 들어온 계기는 무엇이며, KIST의 융합연구는 어떻게 시작 된 것인가요?

서울대학교에서 학부 석사를 마치고 병역특례를 하기 위해서 KIST에 들어왔습니다.  병역특례 기간보다 조금 더 있으면서 몸속을 기어가는 내시경 로봇을 만들었는데, KIST의 융합연구는 그때부터 시작되었습니다.  기본적으로 몸에 들어갈 수 있는 로봇을 개발하기 위해서는 기계 자체가 작아질 수밖에 없습니다. 그래서 ‘초소형 바이오 마이크로 시스템과 뇌과학 분야를 합쳐 시너지를 내자‘라는 움직임이 있었습니다.  그 일환 중에 하나로 ’동물의 움직임에서 센서를 만들어 내는 것‘, ’몸에 붙이는 센서를 만드는 것‘과 같은 다양한 융합연구가 시작된 것입니다. 해외 어디를 봐도 KIST처럼 융합연구를 하기 적합한 곳은 별로 없는 것 같아요.

 

Q8. 향후 초소형 로봇기술은 어떤 곳에 쓰이고, 어느 정도까지 변화가 있을 것으로 생각하시나요?

로보틱스라는 학문 자체가 융합연구이기 때문에 로봇이 적용되는 분야는 다양할 수 있습니다.  초소형 로봇기술은 Cell Manipulation에 적용될 수 있고, MIcro patterning쪽에도 적용할 수 있습니다.  제가 생각하고 있는 로봇 분야는 사람처럼 동작하는 것뿐만 아니라 사람이 제어하는 것의 한계를 극복할 수 있는 로봇입니다.  아직 바이오, 의학 분야에는 인체의 한계 때문에 탐구하지 못하는 분야가 있으므로 초소형로봇기술을 이용한다면 새로운 문제를 풀어나갈 수 있을 것입니다.

 

Q9. 박사님께서 생각하는 좋은 연구는 뭐라고 생각하세요?

대학원을 진학하는 과정에서 내가 어떤 분야를 잘할 수 있고, 부족한 분야는 어떻게 메이크업을 해야 내가 생각 하는 것을 구연할 수 있을지, 만들 수 있을지 생각하게 됩니다.  그런 과정에서 연구는 경쟁적 일수밖에 없습니다.  좋은 연구는 사회적 연구 의미가 있는 연구일 수도 있고 경쟁적으로는 세계적으로 살아남는 연구들일 수도 있습니다.  경쟁적이라는 것이 싸우고 좋은 성과를 내고 이런 것이 아니라 이제는 연구의 눈높이를 텍스트가 아닌 같이 연구하는 연구원들과 눈높이를 만들 수 있도록 하는 것이 노력하는 것이라고 생각합니다.

 
Q10. 박사님처럼 여러 분야의 학문을 접목시켜 연구하기 위해 꿈을 키워가는 청년들에게 해주고 싶으신 말이 있나요?

기회가 된다면 다른 분야의 공부를 접할 수 있었으면 좋겠습니다.  다른 분야의 공부를 시작할 때 나보다 오래 공부한 사람들보다 잘할 수 있을까? 라는 물음표를 던지기보다는 도전하는 것을 두려워하지 않았으면 좋겠습니다. 제가 주변에서 성공하시는 분들을 봤을 때는 분야를 바꿀 때 어려움이 많지만, 주변에 노력으로 허들을 뛰어넘은 분들이 많습니다. 본인이 새로운 것에 대해 도전하는 두려움이 없는 것이 가장 중요할 것 같습니다.

 

 

Posted by KIST PR

댓글을 달아 주세요

III-V족 화합물 반도체를 실리콘(Si) 기판위에 적층하는 저비용 공정으로

소자 발열 해결 및 최고 수준의 전하이동도 특성 확인

초저전력 고성능 III-V족 화합물 반도체* 소자 상용화 기대

*III-V족 화합물 반도체 : 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체 물질.


  가전제품이나 휴대폰 등 기기의 소형화가 진행됨에 따라, 반도체의 크기도 지속적으로 감소해 왔다. 현재 주로 사용되고 있는 실리콘 반도체의 경우, 작은 면적에 더 많은 소자를 넣기 위해 물리적 한계로 여겨지는 10nm 크기 수준으로 작아졌고, 구조도 2차원 평면형에서 3차원 입체형으로 전환되고 있다. 하지만 소자 집적도가 높아짐에 따라 소자간 간섭현상과 발열 문제가 해결해야 할 과제로 남아있다.  

  한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 김상현, 김형준 박사팀은 국민대학교 김동명 교수연구팀과의 공동연구로 기존의 실리콘 위에 III-V족 화합물 반도체를 3차원으로 적층하는 기술을 개발하여 기존 반도체보다 훨씬 빠르고, 전력 소비가 현저히 적어 발열문제를 해결한 고성능 반도체 소자를 개발했다. KIST 김상현 박사팀은 기존 소자의 발열문제를 해결하기 위해서 전력소비를 낮추는 것에 집중했다. 전자의 이동속도가 빠를수록 전력소비가 낮아지고 전력소비가 낮아질수록 발열량이 낮아지는데, 차세대 반도체로 각광받고 있는 III-V족 화합물 반도체는 기존의 실리콘 반도체보다 높은 전자 이동도를 보이며, 소비전력도 적어 고성능 핵심소재로 인식되고 있다. 하지만 제조공정이 비싼 단점이 있어 군사, 통신 등 특수분야에 한정적으로 이용되고 있는 실정이었다. 미국, 일본 등 선진연구수준과는 달리 우리나라의 경우 실리콘 반도체에 집중하여 상대적으로 III-V족 화합물 반도체에 대한 연구가 취약한 실정이었다.
연구진이 개발한 기술은 실리콘 기판 위 전자가 이동하는 반도체 채널 부분에 III-V족 화합물 반도체인 인듐갈륨비소(InGaAs)를 얇고 균일하게 형성하여 효과적이고 저비용의 III-V족 화합물 반도체 소자를 제작할 수 있는 공정으로, 산업계에서 응용가능성이 매우 높을 것으로 기대되고 있다.

[그림1] 실리콘 상 III-V족 화합물 반도체 층 제조 공정 모식도


우선 비용적인 측면에서는 웨이퍼 본딩(Wafer Bonding)*이라는 공정을 통해서 필요한 부분에만 인듐갈륨비소(InGaAs)를 실리콘 위에 접착하여 사용하고 비교적 간단한 공정인 ELO(Epitaxial Lift Off)*공정을 통해 떼어낸 III-V족 화합물 모재 기판(InP)을 재사용함으로서 획기적으로 원가를 절감할 수 있게 되었다. 시간적 측면에서도 기존의 ELO(Epitaxial Lift Off)공정 시 발생하는 수소 거품과 소수성 표면 문제를 웨이퍼 접착(Bonding)시 소자의 패터닝과 모재 기판(InP)의 친수성 표면을 이용하여 해결함으로써 공정시간을 기존대비 수십 배 이상 단축시키는데 성공하였다.
*웨이퍼 본딩(Wafer Bonding) : 접착제등을 사용하지 않고 서로 다른 기판을 접합하는 기술
*ELO(Epitaxial Lift Off) : 가운데 희생층을 두고, 목적하는 재료를 성장 후에 재료를 박리하는 방법

[그림2] 실리콘 상 III-V족 화합물 반도체 (InGaAs)의 단면 전자현미경사진 및 이로 제작된 소자의 이동도 결과

 

이 기술은 재료 및 공정 원가가 상용화의 걸림돌이었던 III-V족 화합물 반도체의 제조 공정을 쉬운 공정방법으로 변경함으로써 원가 절감 및 공정 고속화를 가능하게 하였을 뿐만 아니라 세계 최고 수준의 전자 이동도 특성까지 보여주어 초저전력으로 발열문제를 해결한 고성능 화합물 반도체 소자 상용화를 앞당겼다고 볼 수 있다. 김상현 박사는 “본 연구를 통하여 단순히 실리콘상에서 III-V족 화합물 반도체를 형성하는 데에 그치는 것이 아니라 3차원으로 여러 층을 적층하여 집적도가 향상된 다기능 소자를 실현하는 것이 기대된다.”고 밝혔다.


본 연구는 한국과학기술연구원 플래그쉽 연구사업, 산업통상자원부 미래반도체소자 원천기술개발사업, 미래창조과학부 중견연구자 지원사업으로 수행되었으며, 연구결과는 국제학회인 ‘IEEE International Electron Devices Meeting (IEDM)*’에서 12월 7일에 발표되었다.
* IEDM 학회는 세계 3대 반도체 학회로 전자소자 분야 최고 권위 학회로 인정받고 있다. 특히 반도체 분야의 올림픽이라는 별칭을 가지고 있으며 각국의 산업계, 연구소, 대학 등에서 관련된 최신 기술을 발표하고 있다.

 

 * (논문명) Cost-effective Fabrication of In0.53Ga0.47As-on-Insulator on Si for Monolithic 3D via Novel Epitaxial Lift-Off (ELO) and Donor Wafer Re-use (IEEE International Electron Devices Meeting (IEDM), (Paper Acceptance 118-2742 (2016. 12. 7 10:45 (샌프란시스코 시간) 발표)
          - (제1저자) 한국과학기술연구원 김성광 학생연구원       
          - (교신저자) 한국과학기술연구원 김상현 박사, 국민대학교 김동명 교수

Posted by KIST PR

댓글을 달아 주세요