탄소나노튜브 실로 구성된 유연한 열전소자 개발

뛰어난 발전 밀도로 향후 열에너지를 변환하는

플렉서블, 웨어러블 열전소자에 적용 기대

 

열전소자는 소자 양끝의 온도 차이를 이용하여 열에너지를 전기에너지로 변환하는 소자이다. 최근 외부 온도와 체온의 온도 차이를 통해 생산되는 전력을 웨어러블 기기의 전력원으로 사용하려는 연구가 꾸준히 이루어지고 있다. 하지만, 기존의 상용화된 열전소자는 무기 반도체 재료를 기반으로 하여 무겁고, 유연하지 않아 웨어러블 기기에 적용하기가 어려웠다. 최근 국내 연구진이 탄소나노튜브 실*을 이용하여 전기 발전을 가능케하는 유연한(flexible) 열전 소자를 개발했다고 밝혔다.
*탄소나노튜브 실(Carbon Nanotube Yarn) : 두께 5 nm(나노미터, 십억 분의 1m)의 탄소나노튜브 수천가닥을 꼬아서 실 형태로 제작, 강철의 100배 정도의 강도를 지니며 첨단섬유에 사용

한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 광전하이브리드연구센터 김희숙, 최재유 박사 연구팀은 서울대학교 재료공학부 박종래 교수 연구팀과의 공동연구를 통해 탄소나노튜브를 실 형태로 제작한 후 별도의 금속 전극 없이 열전 소자에 적용하여 기존 열전 소자의 한계를 해결했다고 밝혔다. 연구진이 개발한 열전소자는 기존 연구와 달리 금속 전극을 사용하지 않아 더욱 유연하고, 내부에서 발생하는 저항이 적어 높은 발전 성능을 가지게 된다. 먼저, 탄소나노튜브 실을 합성하고 n-, p- 타입으로 도핑하여 열전소자를 제작하였고, 또한 금속 전극을 추가로 도입하지 않고 탄소나노튜브 자체의 고전도성을 활용하여 전극으로 사용함으로써 소자의 저항을 낮추어 발전밀도를 향상시켰다.

<그림1>탄소나노튜브 실을 이용한 플렉서블 열전 모듈의 제작 과정

본 연구에서 5도의 온도 차이로부터 10.85 마이크로 와트(μW/g)의 에너지 발전 밀도를 기록하였으며, 이 발전량은 보고된 유연 열전 재료 기반 소자 중 최고 수준의 결과이다.  KIST 김희숙 박사는 “이번에 개발한 탄소나노튜브 실을 이용한 열전소자는 가볍고, 기계적 성질이 뛰어나며 높은 열전발전 성능을 보인다.”고 말하며, “이를 활용하면 향후 체온으로부터 웨어러블 디바이스에 직접 전원 공급이 가능하게 될 것”이라고 밝혔다.

<그림 2> 사람의 체온을 이용한 열전 발전 모듈

본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 국가과학기술연구회 R&D 컨버젼스 프로그램의 지원으로 수행되었으며, 연구결과는 나노재료 분야의 국제학술지 ‘ACS Nano’(IF: 13.942) 8월 23일에 온라인 게재되었다.

 

 * (논문명) ‘Flexible and robust thermoelectric generators based on all-carbon nanotube yarn without metal electrodes’
     - (제1저자) 한국과학기술연구원 최재유 박사
     - (교신저자) 한국과학기술연구원 김희숙 박사, 서울대학교 박종래 교수

Posted by KIST PR

댓글을 달아 주세요

열전 재료는 온도의 차이를 전류의 흐름으로 바꿀 수 있는 재료를 의미합니다. 이 열전 재료를 이용하여 제작한 열전발전기는 열에너지를 터빈과 같은 다른 기기를 통하지 않고 전기에너지로 변환하기 때문에 효율이 높고, 다양한 폐열(waste heat)을 이용하여 발전을 할 수 있다는 점 때문에 최근 각광받고 있는 분야입니다.

<그림 1> 열전 재료는 온도 차이에 의해 전압 차이를 가져오는 재료입니다. 즉, 전기를 만들 수 있는 재료입니다.<그림 1> 열전 재료는 온도 차이에 의해 전압 차이를 가져오는 재료입니다. 즉, 전기를 만들 수 있는 재료입니다.

 

일반적으로 열전재료로 사용되는 물질은 밴드갭을 가지고 있는 반도체재료입니다. 반도체 재료는 효율은 높지만 매우 딱딱하고 전기전도도가 낮으며 가격이 매우 비쌉니다. 따라서 반도체재료는 몸에 부착할 수 있는 웨어러블 열전발전기로 사용하기에 제약이 있습니다. 이에 많은 연구자들이 유연하고 늘어날 수 있는 열전소자에 대해 연구하고 있습니다. 최근에는 PEDOT:PSS 라는 전도성 고분자와 같은 물질이 좋은 열전 성능을 가진다고 보고가 되고 있습니다. 하지만 고분자 물질의 낮은 제벡계수 때문에 상용화 단계에는 이르지 못하고 있습니다. 또 다른 후보군으로는 탄소나노튜브나 그래핀과 같은 탄소나노재료가 있습니다. 탄소나노재료는 다른 유기재료에 비해 월등히 높은 기계적 물성, 유연성, 전기전도도 등으로 많은 관심을 받고 있습니다. 이러한 이유에서 그래핀이나 탄소나노튜브를 열전 소자로 사용할 수 있다면, 사람의 체온을 이용하여 발전할 수 있는 웨어러블 열전 발전기 등에 적용 할 수 있을 것입니다.

<그림 2> 열전재료로 사용되는 세라믹은 낮은 전기전도도와 딱딱한 성질을 가지고 있지만, 유기물질은 세라믹에 비해 높은 전기전도도를 가지고 유연한 성질을 가지고 있습니다. 특히 탄소나노재료의 경우 매우 우수한 기계적 물성과 전기적 특징을 가지고 있기 때문에 유기열전재료를 포함한 다양한 분야에서 응용이 많이 되고 있습니다.

한국과학기술연구원 광전하이브리드센터의 손정곤, 김희숙 박사님 팀은 반도체 물질이 아닌 그래핀을 열전 재료로 사용하는 연구를 진행하고 있습니다. 하지만 그래핀을 열전재료로 사용하는 것에는 큰 문제점이 있습니다. 바로 열전 성능인 제벡계수가 낮다는 점과 열전도도가 매우 높다는 점입니다. 그래핀의 제벡계수가 매우 낮은 이유는 그 안의 전자 밀도가 높기 때문이며 같은 이유로 열전도도 또한 높습니다, 손정곤 박사님 팀의 오진우 학생은 해당 문제를 해결하기 위해서 그래핀을 나노사이즈로 패턴하였습니다.

<그림 3> 열전재료로 사용하기 위해 그래핀은 높은 전기전도도를 유지한 채, 전자밀도와 열전도도를 낮추어야 합니다.
오진우 학생은 원자 1개 두께를 가지는 그래핀을 나노패턴하기 위해서 블록공중합체(block copolymer)를 이용하였습니다. 블록공중합체를 이용하면 10나노 이하의 복잡한 패턴을 매우 간단하고 빠른 공정으로 제작할 수 있습니다. 오진우 학생은 이것을 이용하여 그래핀으로 나노메쉬(나노 사이즈의 체 형태)를 제작하였습니다.

<그림 4> 블록공중합체를 이용한 패터닝은 블록공중합체가 친수성-소수성 물질로 이루어져 있기 때문에 나타나는 매우 특이한 현상입니다. 이 현상을 이용하면 복잡한 패턴까지 손쉽게 만들 수 있습니다.
그래핀이 나노메쉬가 된다면 열전도도가 급격히 감소하는데 열 전달 매개체인 포논(phonon)이 산란되기 때문입니다. 또한 그래핀 나노메쉬는 밴드차이가 커지며, 따라서 전자밀도가 감소할 수 있습니다. 즉 앞서 단점으로 지적되었던 낮은 제벡계수를 증가시키고 결과적으로 열전 성능을 높이는 것입니다.

<그림 5> 물질이 나노사이즈가 되었을 때 물질의 성질은 완전히 바뀌게 됩니다. 2 차원 물질인 그래핀이 메쉬가 되면 1차원 물질인 그래핀 나노리본과 비슷한 형태가 되며, 특징 또한 크게 바뀌게 됩니다.
해당 연구에서 오진우 연구원은 기존의 그래핀에 비해 최대 40배 좋은 제벡계수를 가지고, 열전도도 역시 기존 대비 30배 이상 낮은 그래핀 나노메쉬를 제작하여 열전소자로서의 한계점을 극복하였습니다.

<그림 6> 40배 이상 좋은 제벡계수를 가지며 30배 이상 낮은 열전도도를 가지는 그래핀 나노메쉬의 모습입니다. 사이즈 조절 등을 통해 높은 성능을 가지는 그래핀 나노메쉬를 제작할 수 있습니다.
물론 그래핀과 탄소나노튜브의 단일 재료로는 열전발전기를 제작할 수 없을 것입니다. 하지만 다른 유기재료 혹은 무기재료와의 복합체를 제작한다면 유연한 웨어러블 열전발전의 가능성을 열었습니다.

Posted by KIST PR

댓글을 달아 주세요